

Forms v2 User Manual For GFV2

Version control:

Date Description Created by

 30 Dec 2024 Draft PremiseHQ

 28 Jan 2025 Update PremiseHQ

 2 May 2025 Update PremiseHQ

Table of contents:

Table of contents:... 1
Introduction:...3
Key characteristic:..3
Application execution Diagram:...3
Application Access process:..3
Supportive Applications:.. 4
Application execution process:... 4
List of Features:.. 11
Getting Started:..12
1. Manage Forms Page..12

2. Pages General properties and settings:... 17
3. Adding Questions to a Form...18
4. All Input fields properties and settings:...20

a. Single Line Input:.. 20
b. Radio Button Group.. 22
c. Rating Scale..24
d. Checkboxes.. 26
f. Multi Select Dropdown... 29
g. Yes-No (boolean).. 30
h. File Upload..31

5. Adding a Sample File to a Form:..32
Task 1: Upload the Sample File in the Document Management Application............ 32
Task 2: Add the File Link to the Form... 33

1

6. Choices from a Web Service:...35
7. Data Validation:.. 38

a. Immediate Data Validation: Validation is triggered under different scenarios:...... 38
b. Built-In Client-Side Validators: These validators are available to validate user
input against common requirements:..38
c. Custom Client-Side Validation:..39
d. Server-Side Validation:... 40
e. Postpone Validation Until Survey Ends:..41
f. Switching Between Pages with Errors:.. 41

8. Build-in function for Expression Validation:.. 41
9. Conditional Logic and Dynamic Texts:... 44

a. Dynamic Texts:..45
b. Conditiuonal Logic:... 46
c. Variables and Calculated Values:..48

10. Publishing Forms as Public:... 49
a. Publishing a Form Using "Form V2" Component..49
b. Publishing a Form Using "JSON"..51
c. Publishing an App... 51
d. Enable Public Visibility:... 52
e. Save and Publish:... 52
f. Access Public Site URL:.. 52

11. Form Permissions Management:..52
a. Permissions Overview.. 52
b. Steps to Assign Permissions.. 53

12. Form Submission History Page:...53
13. Form Version List Page:... 57

a. Version Overview Table.. 58
b. Actions.. 59

14. Translation Settings:...60
a. Translation Sections:...60
b. Language Settings Panel:...61
c. Steps to Adding and Managing Translations...61

15. ETC 0... 61
16. ETC 1... 61
17. ETC 2... 61
18. ETC 3... 61
19. ETC 4... 61

2

Introduction:
Our advanced Forms Application is a robust and versatile platform designed to
streamline data collection and enhance user interaction. Built with scalability and
flexibility in mind, this application caters to diverse needs, whether for individual users,
businesses, or large organizations. The feature-rich platform supports unlimited forms,
submissions, and file uploads, offering a seamless experience for both form creators
and respondents.

Key characteristic:

●​ Dynamic and Customizable Forms
●​ Enhanced Usability and Efficiency
●​ Advanced Customization Options
●​ Integration and Accessibility
●​ Navigation and Submission
●​ Security and Management

Application execution Diagram:

Application Access process:
1.​ The user has to go to the Groundfloor. URL. https://v2.groundfloor.co/login
2.​ Sign in with Valid credentials.
3.​ Click on the “Forms V2” from the Application service layer.
4.​ User will get 2 pages

●​ Manage Forms. Users will be able to create or manage the forms from the

page.
●​ List of Forms. Users will be able to submit the live forms responces from

the page.

3

https://v2.groundfloor.co/login

Supportive Applications:
1.​ Apps & Pages.
2.​ Document Management.
3.​ Data vault.
4.​ User System.

Application execution process:
1.​ Sign In:

●​ Navigate to Groundfloor Login.
●​ Sign in with valid credentials.

2.​ Create a New Form:

●​ Click on "Forms V2" from the Application Service Layer.
●​ Navigate to the Manage Forms page.
●​ Click "+ Create Form" in the top-right corner.

4

https://v2.groundfloor.co/login

●​ You will be redirected to the Form Designer page.

3.​ Design the Form:
●​ Add a Form Title and Description from the General section.

5

●​ Drag and drop the required input fields from the left side of the designer to
the form canvas.

●​ Update the titles of the fields as needed.
●​ Click the Save button in the bottom-right corner to save the form.

6

4.​ Make the Form Live:
●​ To make the form live, change the form status from Offline to Live using

the status dropdown at the bottom-left corner of the form.

●​ Alternatively, change the form status via the Manage Forms Table Action
section.

7

5.​ Updating a Form:
●​ Go to the Manage Forms page.
●​ Select the form you want to update.
●​ Click on the Action button.
●​ Choose Update Form from the dropdown.

●​ You will be redirected to the Form Designer page.
●​ Make the necessary updates to the form and click Update.
●​ A new version of the form will be created.

8

●​ Only users with the permission to update forms can perform this action.
This permission can be managed via the Form Permissions Settings page.

6.​ Submitting a Form Response:

●​ Navigate to the List of Forms page.
●​ Locate the form and click on its Title to load it.

●​ Fill in the input fields with the required data.
●​ Submit the form using the Submit button.

9

●​ You can also save the response as a draft using the Save as Draft
functionality.

7.​ Admin Functions for Form Management:

The following functionalities are available from the Manage Forms Table Action
section:

●​ Testing: Test the form after creation.
●​ Status Management: Change the form status (e.g., Offline to Live).
●​ Editing: Update the form's details or structure.
●​ Response Review: View submission history to see responses.
●​ Permissions: Manage user permissions for the form.
●​ Version History: View and manage the form version list.

10

List of Features:

●​ Unlimited forms, submissions and file uploads
●​ Dynamic JSON-driven forms
●​ 20+ accessible input types
●​ Panels for question grouping
●​ Matrix for question grouping
●​ Multi-page forms
●​ Calculator forms
●​ Duplicate group option
●​ Data validation
●​ Conditional Logic and Dynamic Texts
●​ Draft-save
●​ Text formatting
●​ Data aggregation
●​ Custom form branding
●​ Custom input fields
●​ Conditional logic
●​ Integration with 3rd-party libraries
●​ Expression language (Built-in & custom functions)
●​ Load choices from web services
●​ e-Signature field
●​ All popular types of form navigation

11

●​ Support for RTL languages
●​ Public form submission
●​ Forms version control
●​ Permission management
●​ Offline and online forms
●​ Submission history list and edit submission

Getting Started:

1.​ Manage Forms Page
The Manage Forms page allows users to view, manage, and take actions on
forms in the system. Below is a detailed guide to understanding and utilizing the
features of this page.
Page Overview: The page is divided into key sections to help you organize and
manage forms effectively:

a.​ Header Section:

●​ Breadcrumb Navigation: Displays the current location within the
application (e.g., Forms).

b.​ Table View The table provides an overview of existing forms with the
following columns:

●​ Name: The name of the form. You can filter the list by entering
keywords in the input field under the column header.

●​ Version: The version number of the form.
●​ Status: Displays the current status of the form (e.g., Live).
●​ Created Date: The date and time the form was created.
●​ Created By: The name of the user who created the form.

12

●​ Last Modified: The most recent date and time the form was
updated.

●​ Updated By: The name of the user who last modified the form.
●​ Action Menu: Provides additional actions for managing forms.

c.​ Create a New Form:
●​ Click the + Create Form button to navigate to the form creation

page.

d.​ Action Menu The three-dot menu under the Action column provides the
following options:

13

●​ Test Form: Opens the form in a test environment to review its
functionality.

●​ Make Form Offline: Temporarily disables the form. This is
available only if the form is currently in a Live status.

●​ Make Form Live: Activates a form that is currently offline.
●​ Update Form: Opens the form editor to make changes to the form.
●​ Submission History: Displays a log of submissions for the

selected form.
●​ Permission Settings: Configures access permissions for the form.
●​ Version List: Views the history of versions for the form.
●​ Delete Form: Permanently removes the form from the system. Use

this option cautiously, as deleted forms cannot be recovered.

e.​ Filters
●​ Search Field: Allows you to search for forms by name.
●​ Date Filters: Specify date ranges for the Created Date and Last

Modified fields to narrow down your search.

14

f.​ Footer Section
●​ Pagination controls are available to navigate through multiple

pages of forms.
●​ Application details such as version information and links to the

Terms of Use and Privacy Policy are displayed at the bottom.

g.​ Additional Notes
●​ The form statuses (Live, Offline, etc.) indicate whether the form is

currently active and available for use.
●​ Users with appropriate permissions can access all features listed in

the Action Menu.

15

2.​ Forms General properties and settings:
The forms have a general settings which will be applied for all the fields and core
forms, the settings option includes the following features:

a.​ General
●​ Configure basic properties for the form, such as the form title,

description, and display mode.
●​ Manage form-wide settings, like setting a unique form ID, choosing

the form's language, and customizing styles.

b.​ Logo in the Form Header
●​ Add a logo to the top of the form.
●​ Specify the logo's URL, alignment (left, center, or right), and size

settings.

c.​ Navigation
●​ Customize navigation settings for the form.
●​ Control buttons such as "Start," "Previous," "Next," and "Complete."
●​ Enable or disable navigation options like "show progress bar" or

"enable back navigation."

d.​ Question Settings
●​ Define global settings for all questions, such as their default state

(e.g., required or optional).
●​ Set default values, visibility logic, or other properties that apply to

all questions.

e.​ Pages
●​ Manage the structure of the form by adding, deleting, or reordering

pages.
●​ Configure page-specific settings like page titles, descriptions, or

visibility logic.

f.​ Conditions
●​ Set up conditional logic to display questions or pages based on

user responses.
●​ Configure "if-then" rules to create dynamic forms.

g.​ Data

●​ Define how data is collected and stored.
●​ Enable features like data encryption or custom metadata fields for

user tracking.

h.​ Validation
●​ Specify validation rules for user input, such as minimum and

maximum lengths, numeric ranges, or regular expression checks.

16

●​ Manage error messages and define validation triggers.

i.​ “Thank You” Page
●​ Design the final page displayed to users after form completion.
●​ Add a custom thank-you message, links, or call-to-action elements.

j.​ Quiz Mode

●​ Enable quiz functionality in the form to evaluate respondents’
knowledge or skills.

●​ Add correct answers and scores for each question to calculate total
results.

●​ Customize result messages or feedback for different score ranges.
●​ Configure settings for score display, such as whether to show the

respondent’s score after completion or during the quiz.

2.​ Pages General properties and settings:
The forms page have a general settings which will be applied for all the fields and
core forms, the settings option includes the following features:

a.​ General
●​ This specifies the name or label of the page, displayed to users at

the top of the page (e.g., "Page 1").
●​ Add a brief description or instructions for the page. This helps users

understand the purpose of the questions on the page.
●​ Set the visibility mode and read only mode will be configured by

enable the checkbox

b.​ Question Settings

17

●​ Configure options specific to the questions on the page. This could
include settings like alignment, error message alignment, or
question ordering on the page.

c.​ Conditions

●​ Set conditions to show or hide the page, read-only mode and
required of the page based on user inputs in previous questions.
For example:Display this page only if a particular question's
response matches a certain value.

d.​ Navigation

The Navigation settings in the image allow you to control the visibility of
navigation buttons for a page in the form.
The options are:

●​ Inherit: The navigation button settings will follow the default
behavior or settings applied globally to the form.

●​ Visible: Navigation buttons (e.g., "Next" or "Previous") will be
explicitly shown on this page, regardless of global settings.

●​ Hidden: Navigation buttons will be hidden on this page, preventing
users from moving to the next or previous page using these
buttons.

These settings give you flexibility to manage the user's flow and
interaction with the form on a per-page basis.

3.​ Adding Questions to a Form
To add questions to a form click "Add Question": Choose from various question
types such as text, checkbox, dropdown, and more.

18

a.​ Configure the Question:
●​ Title: Enter the question text.
●​ Description: Add optional details to guide users.
●​ Is Required: Toggle to make the question mandatory.
●​ Placeholder: Add sample text or hints for input fields.

b.​ Available Form Fields:
●​ Radio Button Group: Presents multiple options where the user

can select only one. Useful for single-choice questions.
●​ Rating Scale: Allows users to rate an item on a scale, such as 1 to

5 or 1 to 10.
●​ Checkboxes: Lets users select multiple options from a given list.
●​ Dropdown: Provides a dropdown menu with predefined options for

single selection.
●​ Multi-Select Dropdown: Similar to the dropdown but allows

multiple selections.
●​ Yes/No (Boolean): Provides a simple Yes/No toggle option.
●​ File Upload: Allows users to upload files as part of their responses.
●​ Image Picker: Enables users to select one or multiple images.
●​ Ranking: Allows users to rank items in order of preference or

priority.
●​ Single-Line Input: A text field for short answers like names or

email addresses.
●​ Long Text: A text area for longer responses, such as feedback or

descriptions.
●​ Multiple Textboxes: A group of input fields displayed together for

structured data.
●​ Panel: Groups related questions visually on the form.
●​ Dynamic Panel: A group of fields that users can duplicate

dynamically.
●​ Single-Select Matrix: A table format where users select one option

per row.
●​ Multi-Select Matrix: Similar to Single-Select Matrix but allows

multiple selections per row.
●​ Dynamic Matrix: A dynamic table where users can add rows with

predefined columns.
●​ HTML: Allows embedding custom HTML content for instructions,

styling, or visuals.
●​ Expression (read-only): Displays calculated values or expressions

that are non-editable.
●​ Image: Inserts an image into the form for display purposes.
●​ Signature: Allows users to sign digitally using a touchscreen or

mouse.

19

●​ Async Select Dropdown: A dropdown with dynamic data loading
for large datasets.

●​ Button: Adds a clickable button for custom actions.
●​ Smart Text Input: An advanced input field with features like

auto-suggestions or formatting.

4.​ All Input fields properties and settings:

a.​ Single Line Input:
The Single Line Input Field Settings page is divided into six key sections:
General Settings, Layout, Conditions, Input Mask Settings, Data, and
Validation. Each section is designed to configure specific aspects of the
input field in the form. Below is a detailed explanation of each section.

●​ General Settings:
This section configures basic properties for the field:

●​ Question Name: An internal identifier not visible to
respondents.

●​ Question Title: A user-friendly title displayed to respondents.
●​ Question Description: A subtitle providing additional

information about the question.
●​ Visibility:

●​ Hidden: Makes the field invisible to respondents.
●​ Read-Only: Displays the field but restricts input.
●​ Required: Ensures the field must be filled before

submission.
●​ Input Type: Validates the input against the selected type.

Options include:

20

●​ Text
●​ Number
●​ Email
●​ URL
●​ Date/Time (with variations like "Date", "Month",

"Time", etc.)
●​ Password
●​ Phone Number
●​ Range
●​ Week

●​ Placeholder Text: Sets default text within the input field for
guidance.

●​ Autocompletion Type: Defines the type of data that the user's
browser retrieves for autofill.

●​ Auto-Suggest Items: Provides a list of predefined
suggestions during input.

●​ Layout: Controls the field's appearance:
●​ Display Settings:

●​ Display on a new line or inline with previous
questions.

●​ Hide or show the question number.
●​ Question Box State:

●​ Expanded: Fully displayed and collapsible.
●​ Collapsed: Initially minimized but expandable.
●​ Locked: Fully displayed and non-collapsible.

●​ Alignment Options:
●​ Title Alignment: Choose "Top", "Bottom", "Left",

"Hidden", or "Inherit".
●​ Description Alignment: Place under the input field,

under the title, or inherit default rules.
●​ Error Message Alignment: Set to "Top", "Bottom", or

inherit default settings.
●​ Inner Indent: Adds margin between the question

content and its container.
●​ Width Settings:

●​ Inline question width (CSS values like %, px, etc.).
●​ Minimum and maximum width of the question box.
●​ Input field width (measured in characters).

●​ Conditions: Define rules for field behavior:

●​ Visibility Rules: Make the question visible under specific
conditions.

●​ Read-Only Rules: Enable/disable read-only mode based on
conditions.

●​ Required Rules: Make the field mandatory only when
conditions are met.

21

●​ Default Value Expression: Calculate default values using
expressions or functions.

●​ Reset Value Rules: Reset the field’s value based on
conditions.

●​ Dynamic Value Assignment:
●​ Use expressions to set the value dynamically.
●​ Respondent inputs can override this value.

●​ Input Mask Settings: Format input fields with specific patterns:
●​ Mask Type:

●​ None
●​ Pattern (custom placeholders and literals)
●​ Date and Time Formatting:
●​ Placeholder patterns like mm/dd/yyyy or hh:mm:ss.

●​ Numeric Formatting:
●​ Set minimum/maximum values and decimal precision.
●​ Define separators for decimals and thousands.
●​ Allow or disallow negative values.

●​ Currency Formatting:
●​ Add prefix/suffix symbols.
●​ Define separators and value ranges.

●​ Data: Specify data-related configurations:
●​ Set default values.
●​ Manage data bindings or integrations (e.g., connecting to an

external database).
●​ Validation: Ensure input accuracy and adherence to rules:

●​ Define custom validation rules.
●​ Specify error messages for invalid inputs.
●​ Limit the maximum character length.

This section provides a comprehensive explanation of the
single-line input field's settings to help users effectively configure
forms.

b.​ Radio Button Group
A radio group field lets users pick one option from a list by clicking a small
circle next to their choice. Once you select one, the others are
automatically unselected. Users can customize the field using the settings
in the following ways:

●​ General Settings:

In the General settings, you can configure the following:
●​ Title: This is the question text displayed to users. For

example, "What is your favorite color?"
●​ Description: An optional field to provide additional

information or context for the question. For example, "Please
select one option that best matches your preference."

22

●​ Choices: Add, remove, or edit the list of options. Each
choice represents a single selectable option in the radio
button group. Users can reorder choices using
drag-and-drop or randomize their display order.

●​ Default Value: You can set a preselected option for users.
For example, "Red" can be pre-selected if it’s the most
common answer.

●​ Other Option: Enable an "Other" choice, allowing users to
type a custom response that is not listed among the
predefined options.

●​ None Option: Add a "None" option to allow users to indicate
that none of the provided choices apply to them.

●​ Visibility Condition: Use conditional logic to show or hide
the question based on other responses. For example:
"Display this question only if the answer to 'Do you like
colors?' is 'Yes.'"

●​ Read-Only Mode: Make the question read-only to display it
as non editable for users. This is often used in cases where
you want to show a pre-selected option but not allow
changes.

●​ Validation and Logic: Required Mark the question as
mandatory, ensuring users select one of the options before
proceeding.

●​ Custom Validation Logic: Define advanced logic using
expressions, such as ensuring an answer matches specific
conditions.

●​ Choices from a Web Service

●​ Dynamic Choices: Fetch options dynamically from an
external web service or API.

●​ Configuration: Specify the URL or endpoint to retrieve the
data.

●​ Real-Time Updates: Ensure the list updates in real-time
based on external changes.

●​ Styling Options
●​ Customize the layout of the choices (vertical or horizontal

alignment).
●​ Adjust spacing between options.
●​ Use custom CSS classes to change colors, fonts, or the size

of the radio buttons.

23

●​ Validation Rules
Validation rules can be customized for each field to ensure proper
data input and guide users effectively.

●​ Text Validation: Throws an error if the entered text's length
is outside the specified minLength and maxLength range.

●​ Expression Validation: Allows adding logic or performing
calculations in the form fields. Expressions are evaluated
dynamically at runtime.

●​ Supported expression types:
●​ String Expression: Evaluates to a string value. Example:​

"expression": "iif(age({birthdate}) >= 21, 'Adult', 'Minor')"
●​ Numeric Expression: Evaluates to a number. Example:​

"expression": "sum({total1}, {total2})"
●​ Boolean Expression: Evaluates to true or false.
●​ Number Validation: Throws an error if the input is not a

number or falls outside the specified minValue and maxValue
range.

●​ Email Validation: Throws an error if the entered value is not
in a valid email format.

●​ Regex Validation: Throws an error if the input does not
match the pattern defined in the regex property.

c.​ Rating Scale
A rating scale field is a simple explanation of what the scale is for. It helps
users to rate things correctly. This makes sure everyone's answers are

24

clear and consistent. On our forms, user can use a rating scale field and
update the features for the field in the following process:

Field Settings and Features for the Rating Scale

●​ General
●​ Question Title: Set or modify the question's title. Example:

"How satisfied are you with our service?"
●​ Description: Add a short description or instruction under the

question to provide context to the user.
●​ Required: Mark the question as mandatory or optional for

form completion.
●​ Read-only: Option to make the question non-editable by

respondents.

●​ Rating Values
●​ Define Rating Range: Specify the range of values (e.g., 1 to

5, or 1 to 10).
●​ Custom Labels: Assign meaningful labels to each value

(e.g., 1 = "Very Dissatisfied," 5 = "Very Satisfied").
●​ Default Value: Set a preselected value if needed.
●​ Allow Partial Ratings: Enable decimal values for more

precise ratings (e.g., 4.5).

●​ Layout
●​ Orientation: Choose between a horizontal or vertical layout

for the rating scale.
●​ Step Size: Adjust the increment between rating values (e.g.,

1, 0.5).
●​ Width Adjustment: Define the width or spacing of the rating

scale to fit the design.

●​ Conditions
●​ Display Logic: Show or hide the question based on

answers to previous questions. For example:
●​ If "Overall Satisfaction" is less than 3, display this question.
●​ Enable/Disable Logic: Control if the field should be active

or inactive under certain conditions.
●​ Advanced Logic: Use multiple conditions combined with

"AND"/"OR" operators.
●​ Data

●​ Field Name: Assign a unique internal name for easy data
reference in reports.

●​ Data Validation: Ensure responses fall within the valid
range or adhere to specific rules.

●​ Skip Logic: Skip to a specific page or question based on the
respondent’s input.

25

●​ Validation

●​ Range Enforcement: Ensure values fall within the defined
range (e.g., 1 to 5).

●​ Error Messages: Customize error messages if validation
fails. For instance:

●​ "Please select a rating between 1 and 5."
●​ Dependencies: Set dependencies for this field based on

responses to other fields.

●​ Toolbar Features for Rating Scale
●​ Duplicate: Quickly duplicate the question for reuse

elsewhere in the form.
●​ Required: Toggle to make the question mandatory.
●​ Delete: Remove the question from the form.
●​ Labels: Easily customize labels for each rating value from

the toolbar.

d.​ Checkboxes
In Checkboxes question type within a form designer interface, this type of
question allows users to select multiple options from a list of predefined
choices. Below is a structured description of its key components:

●​ General
●​ Question Title: Set or update the question’s title. Example:

"Select the items you need."
●​ Description: Add a brief explanation or instruction under the

question to guide the respondent.

26

●​ Required: Mark the question as mandatory for Form
completion.

●​ Read-only: Make the field non-editable to display predefined
selections.

●​ Choice Options
●​ Add/Edit Choices: Define the list of checkbox items.

Example: "Item 1," "Item 2," etc.
●​ Select All Option: Automatically include a "Select All"

checkbox for easier selection.
●​ None Option: Include a "None" option for respondents who

don't choose any items.
●​ Other Option: Add an "Other" checkbox with an optional text

field for custom input.

●​ Choices from a Web Service
●​ Dynamic Choices: Fetch options dynamically from an

external web service or API.
●​ Configuration: Specify the URL or endpoint to retrieve the

data.
●​ Real-Time Updates: Ensure the list updates in real-time

based on external changes.

●​ Layout
●​ Orientation: Choose between vertical or horizontal

alignment of checkboxes.
●​ Columns: Split the options into multiple columns for better

readability.
●​ Spacing: Adjust the spacing between checkbox items.
●​ Custom Styling: Apply custom styles to match the form

design.

●​ Conditions
●​ Display Logic: Show or hide the field based on responses

to previous questions. For example:
●​ If "Product Type" is "Electronics," show specific checkbox

options.
●​ Enable/Disable Logic: Activate or deactivate the field based

on conditions.
●​ Advanced Logic: Use combinations of "AND"/"OR"

operators to set complex conditions.
●​ Data

●​ Field Name: Assign a unique identifier for easier reference
in data exports or reports.

●​ Default Selections: Pre-select one or more checkboxes by
default.

27

●​ Data Validation: Ensure the respondent selects a valid
number of options (e.g., "Select at least 2 items").

●​ Validation

●​ Minimum/Maximum Selection: Set rules for the number of
items a respondent can or must select.

●​ Error Messages: Customize error prompts for invalid
selections. For example: "Please select at least one item."

●​ "You cannot select more than three items."
●​ Dependencies: Ensure the validation aligns with other fields

or form rules.

●​ Toolbar Features for Checkboxes
●​ Duplicate: Clone the question for reuse within the form.
●​ Required: Toggle to make the field mandatory or optional.
●​ Delete: Remove the question from the form.

e.​ Dropdowns:

●​ General
●​ Question Title: Set or update the question’s title. Example:

"Select the items you need."
●​ Description: Add a brief explanation or instruction under the

question to guide the respondent.
●​ Required: Mark the question as mandatory for form

completion.
●​ Read-only: Make the field non-editable to display predefined

selections.

●​ Choice Options:
●​ Enables you to manage the predefined options that users

can select from the dropdown list.
●​ You can add, edit, or remove items (e.g., "Item 1," "Item 2")

displayed in the dropdown menu.

●​ Choices from a Web Service:
●​ Provides functionality to dynamically populate dropdown

options by fetching data from an external web service or API.

●​ Layout:
●​ Configures the visual layout and appearance of the

dropdown question, such as alignment, width, or display
style.

●​ Conditions:

28

●​ Allows you to set conditional logic for the question. For
instance, show or hide the dropdown based on responses to
previous questions.

●​ Data:

●​ Configures data-specific properties, such as variable naming
for backend integration or data validation requirements.

●​ Validation:

●​ Provides options to set validation rules, ensuring the user's
selection meets predefined criteria (e.g., requiring a
selection or restricting choices).

These settings ensure the dropdown question is fully customizable to meet both
functional and design requirements.

f.​ Multi Select Dropdown
The marked field in the image represents the settings panel for a
Multi-Select Dropdown question. Here’s an explanation of each section:

●​ General
●​ Question Title: Set or update the question’s title. Example:

"Select the items you need."
●​ Description: Add a brief explanation or instruction under the

question to guide the respondent.
●​ Required: Mark the question as mandatory for form

completion.
●​ Read-only: Make the field non-editable to display predefined

selections.

●​ Choice Options:
Allows you to manage the available options for the dropdown:

●​ Add, edit, or delete individual options (e.g., "Item 1," "Item
2").

●​ Enable or disable the "Select All" option for ease of
selection.

●​ Choices from a Web Service:
●​ Provides functionality to dynamically populate options using

data fetched from an external API or web service.

●​ Layout:
●​ Manages the appearance of the dropdown:
●​ Control its size, width, and alignment.
●​ Customize its visual placement within the form.

29

●​ Conditions:
●​ Defines conditional logic for showing, hiding, or enabling the

dropdown based on responses to other questions.
●​ Data:

●​ Sets up integration-specific properties, including variable
names for backend data storage and system compatibility.

●​ Validation:

Configures rules for ensuring valid user responses:
●​ Set minimum or maximum selections.
●​ Enforce required selections based on specific criteria.

These settings allow you to fully customize the behavior and appearance of the
Multi-Select Dropdown question, making it adaptable for various use cases.

g.​ Yes-No (boolean)
The marked field in the image represents the settings panel for a Yes/No
(Boolean) question. Here's a detailed description of the available settings:

●​ General:
●​ Question Label: The text displayed as the question prompt

(e.g., "question8").
●​ Mandatory Toggle: Enables or disables whether the user

must answer the question.
●​ Tooltip or Help Text: Provides additional information or

guidance to users about the question.
●​ Default Value: Specifies whether "Yes" or "No" is

pre-selected.

●​ Layout:
●​ Alignment: Adjusts the placement of the question (e.g., left,

center, or right).
●​ Style Options: Customizes the design, such as button size,

spacing, or visual theme.

●​ Conditions:
●​ Visibility Rules: Configures when this question should be

shown or hidden based on responses to previous questions.
●​ Enable/Disable Logic: Allows the question to be enabled or

disabled under specific conditions.

●​ Data:
●​ Variable Name: Sets a unique identifier for the question,

useful for data collection and backend integration.

30

●​ Export Options: Defines how this response is included in
data outputs (e.g., JSON format).

●​ Validation:
●​ Required Response: Ensures the user selects either "Yes"

or "No" before proceeding.
●​ Custom Error Message: Displays a specific error message

if the validation criteria are not met.
These settings allow you to fully customize the behavior, appearance, and data handling
for the Yes/No (Boolean) question.

h.​ File Upload
●​ General

Provides basic settings for the file upload field:
●​ Field title (e.g., "question9" in the image).
●​ Description or tooltip for additional context.
●​ Options for enabling/disabling the field.

●​ Layout

Handles visual customization:
●​ Adjust alignment and positioning of the field within the form.
●​ Define margins and spacing.
●​ Choose field size (e.g., small, medium, or large).

●​ Conditions

●​ Allows you to add logic for showing or hiding the field based
on responses:

●​ Define conditions to make the field visible or invisible
dynamically.

●​ Specify criteria for enabling or disabling the field.

●​ Data
Configures data-related options:

●​ Bind uploaded files to variables or external storage systems.
●​ Specify default files (if applicable).
●​ Set file upload limits like maximum file size and types.

●​ Validation

Enforces restrictions on user inputs:
●​ Mark the field as mandatory.
●​ Restrict file types (e.g., .pdf, .jpg, etc.).
●​ Limit the maximum file size or number of files.
●​ The File Upload field enables respondents to upload files

completion while giving creators flexibility in design and
validation through these settings.

31

5.​ Adding a Sample File to a Form:
To include a sample file in a form, users need to utilize the Document
Management application and follow a two-task process as described below.

Task 1: Upload the Sample File in the Document Management Application

A.​ Create a Folder:
●​ Navigate to the Document Management application.
●​ Create a new folder to organize your files (optional but recommended).

B.​ Upload the Sample File:
●​ Open the newly created folder.
●​ Upload the sample file.
●​ Ensure the file is set as Public.

C.​ Copy the File Link:
●​ Click the Action button (three-dot menu) for the uploaded file.
●​ Select the option to Copy File Link.
●​ The file URL will be copied to your clipboard.

32

Task 2: Add the File Link to the Form
A.​ Edit the Form:

●​ Go to the Forms Application and locate the desired form.
●​ Open the form for editing.

B.​ Add an HTML Field:
●​ Drag and drop an HTML Field into the form.

C.​ Modify the HTML Field Settings:
●​ Navigate to the HTML General Settings for the new field.
●​ Locate the HTML Markup section.

D.​ Insert the File URL:
●​ Paste the copied file link into the markup section.
●​ Example of an HTML markup:

<p>To download the sample file <a download=\"\"
href=\"https://premise-live-bucket.s3.ca-central-1.amazonaws.com/GroundFloorV2/
26b27e505e7a434caff87bd59c777786/07e2df23a01149b4a726e5c89d4e2226/PH
Q test.xlsx\">Click Here</p>

33

E.​ Save the Form:
●​ Click Save to save your changes to the form.

F.​ Make the Form Live:
●​ Change the form's status to Live.

G.​ Testing the Sample File Download
●​ Go to the section where the form is used (e.g., List of Forms, Public Form,

or Common Form, Workflow initiate page ETC).
●​ Click on the hyperlink for the sample file.
●​ Verify that the sample file is downloaded as expected.

34

H.​ Additional Notes
●​ Ensure the file permissions are set to Public in the Document

Management application to avoid access issues.
●​ Use the correct file URL format in the HTML Markup to create a functional

hyperlink.

6.​ Choices from a Web Service:

The Choices from a Web Service feature allows you to dynamically load choices for
form fields such as Dropdown, Multiple Choice, and Radio Group from an external
API. This ensures that the options are always up-to-date and relevant.

A.​ Feature Overview

This feature supports dynamic integration with APIs and allows you to:

●​ Fetch and display choices from an API.
●​ Customize which property from the response data is displayed and stored.
●​ Handle hierarchical or nested data structures using a Path to Data field.
●​ Optionally accept empty responses for flexibility.

Steps to Configure Choices from a Web Service:

B.​ Navigate to the Form:
●​ Open the form where you want to enable this feature.

C.​ Add the Field:

35

●​ Drag and drop or select a Dropdown, Multiple Choice, or Radio Group
field.

D.​ Access Field Properties:
●​ Click the three dots on the top-right corner of the field.
●​ Select Property to open the settings.

E.​ Enable Choices from Web Service:
●​ Scroll down to the Choices from a Web Service section.
●​ Expand the section to view its settings.

F.​ Configure the Web Service:
●​ Web Service URL: Enter the API endpoint URL that returns the data (e.g.,

https://surveyjs.io/api/CountriesExample).
●​ Path to Data: If the response contains nested data, specify the path to the

required array using dot notation (e.g., categories.fiction).
●​ Get Value to Store: Enter the property name from the API response that

should be saved when the user selects an option (e.g., id).
●​ Get Value to Display: Enter the property name from the API response

that should be shown to the user (e.g., name).
G.​ Optional Settings:

●​ Accept Empty Response: Check this box if the API might return an
empty response and the form should handle it without errors.

H.​ Remove Form Entry Field (if applicable):
●​ Delete unnecessary form entry fields that may interfere with the

configuration.
I.​ Save and Preview:

●​ Save the form and click Preview to test the functionality.
●​ Verify that the field dynamically loads data and behaves as expected.

J.​ Correct Response Format:
●​ The API must return an array of objects with consistent keys. Below is an

example of a supported response format:
●​ In this case: The name field contains the values to be displayed as

options.

[{ "name": "Afghanistan", "officialName": "Islamic Republic of Afghanistan", "region":
"Asia", "cca2": "AF", "ccn3": "AF", "cca3": "AFG", "cioc": "AFG" }, { "name": "Angola",
"officialName": "Republic of Angola", "region": "Africa", "cca2": "AO", "ccn3": "AO",
"cca3": "AGO", "cioc": "ANG" }, { "name": "Albania", "officialName": "Republic of
Albania", "region": "Europe", "cca2": "AL", "ccn3": "AL", "cca3": "ALB", "cioc": "ALB" }]

K.​ Incorrect Response Format:
●​ The feature does not support nested objects or arrays. Below is an

example of a wrong response format:
●​ In this case: The name field is nested, making it incompatible with the

Choices from Web feature.

[{ "name": { "common": "Moldova", "official": "Republic of Moldova", "nativeName": {

36

https://surveyjs.io/api/CountriesExample

"ron": { "official": "Republica Moldova", "common": "Moldova" } } }, "tld": [".md"], "cca2":
"MD", "ccn3": "498", "cca3": "MDA", "cioc": "MDA", "independent": true, "status":
"officially-assigned", "unMember": true, "currencies": { "MDL": { "name": "Moldovan
leu", "symbol": "L" } } }]

L.​ Example API Response and Configuration
●​ Correct Response Format (Array of Objects):

[{ "id": 1, "name": "Book A", "category": "Fiction" }, { "id": 2, "name": "Book B",
"category": "Non-fiction" }]

●​ Configuration:
i.​ Web Service URL: https://api.example.com/books
ii.​ Path to Data: Leave blank (the data is at the root level).
iii.​ Get Value to Store: id
iv.​ Get Value to Display: name

M.​Advanced Use Cases
●​ Handling Nested Data: If the data is nested, use the Path to Data field to

specify the path. For example:

{ "categories": { "fiction": [{ "id": 1, "name": "Book A" }, { "id": 2, "name": "Book B" }] } }

●​ Configuration:
i.​ Path to Data: categories.fiction
ii.​ Get Value to Store: id
iii.​ Get Value to Display: name

●​ Accepting Empty Responses: Check Accept Empty Response if your
API might return an empty array and you still want the form to function.
For example:

[]

N.​ Use Cases
●​ Real-time country lists for user selection.
●​ Dynamically updating product categories or options.
●​ Fetching up-to-date organizational or project names from an external

system.
O.​ Notes:

●​ This feature is compatible only with APIs returning an array of objects.
●​ Nested arrays or deeply nested structures may require additional

configuration in the Path to Data field.

37

https://api.example.com/books

●​ If the API response format changes, you may need to update the
configuration.

●​ Always test the API response format before saving the form to ensure
compatibility.

●​ Ensure the API is accessible and provides the required data in the correct
format.

●​ The same configuration applies to Dropdown, Multiple Choice, and
Radio Group fields.

7.​ Data Validation:
The Validation section ensures that the input provided by users meets specified
requirements before it is accepted. This section supports both client-side and
server-side validation. Validation can occur immediately after input, upon page
navigation, or when the form is submitted.

a.​ Immediate Data Validation: Validation is triggered under different
scenarios:

●​ Default Behavior: Errors are checked when respondents navigate
to the next page.

●​ Immediate Validation:
●​ Enable this by setting checkErrorsMode to

"onValueChanged".
●​ To validate user input while typing, set textUpdateMode to

"onTyping".​
Example:

const surveyJson = {
 "checkErrorsMode": "onValueChanged",
 "textUpdateMode": "onTyping",
 "elements": [
 // ...
]
};

●​ Postponed Validation: Validation occurs only when the form

is submitted. Set checkErrorsMode to "onComplete".
b.​ Built-In Client-Side Validators: These validators are available to validate

user input against common requirements:
●​ Required Validator: Ensures the field is not left empty. Use

isRequired to activate this, and specify requiredErrorText for

38

custom error messages.​
Example:

const surveyJson = {
 "elements": [{
 "name": "question1",
 "type": "text",
 "isRequired": true,
 "requiredErrorText": "Value cannot be empty"
 }]
};

●​ Other Validators:
●​ Numeric Validator: Ensures input is a number and optionally within

a range (defined by minValue and maxValue).
●​ Text Validator: Ensures the text length is within minLength and

maxLength.
●​ Email Validator: Validates email format.
●​ Expression Validator: Checks conditions using custom expressions.
●​ Regex Validator: Ensures input matches a defined regular

expression.
●​ AnswerCount Validator: Validates the number of selected options

for multiple-choice questions. Example with multiple validators:

const surveyJson = {
 "elements": [{
 "name": "question1",
 "type": "text",
 "validators": [
 { "type": "numeric", "text": "Value must be a number" },
 { "type": "regex", "regex": "^[A-Z]+$", "text": "Only uppercase letters are allowed" }
]
 }]
};

c.​ Custom Client-Side Validation:
You can implement custom logic using the onValidateQuestion event.
Example:

survey.onValidateQuestion.add((survey, options) => {

39

 if (options.name === "memo" && options.value.indexOf("survey") === -1) {
 options.error = 'Your answer must contain the word "survey"';
 }
});

Alternatively, use expressions:

const surveyJson = {
 "elements": [{
 "name": "memo",
 "type": "comment",
 "validators": [{
 "type": "expression",
 "text": "Your answer must contain the word \"survey\"",
 "expression": "validateComment({memo}) >= 0"
 }]
 }]
};

d.​ Server-Side Validation:
Server-side validation is useful when the validation logic requires data
from external sources. Use the onServerValidateQuestions event to
perform asynchronous checks.​
Example:

survey.onServerValidateQuestions.add((survey, { data, errors, complete }) => {
 const country = data["country"];
 if (!country) {
 complete();
 return;
 }
 fetch("https://example.com/validate?country=" + country)
 .then(response => response.json())
 .then(isValid => {
 if (!isValid) {
 errors["country"] = "Country is not valid";

40

 }
 complete();
 });
});

e.​ Postpone Validation Until Survey Ends:
You can delay all validation checks until the respondent clicks the Submit
button by setting checkErrorsMode to "onComplete". This allows
respondents to review and correct all errors at once. Example:

const surveyJson = {
 "checkErrorsMode": "onComplete",
 "elements": [
 // ...
]
};

f.​ Switching Between Pages with Errors:
By default, respondents cannot navigate away from a page containing
validation errors. You can override this by setting
validationAllowSwitchPages to true. This feature is helpful in long surveys
where respondents may want to revisit sections. Example:

survey.validationAllowSwitchPages = true;

g.​ Best Practices:

●​ Use Immediate Validation for fields where errors need to be
corrected in real-time (e.g., email addresses).

●​ Employ Postponed Validation for complex forms where users may
prefer to review inputs before submission.

●​ Combine Built-In Validators with Custom Validation for advanced
scenarios like integrating external data checks.

8.​ Build-in function for Expression Validation:
Description: Functions allow you to perform additional calculations within an
expression.

41

a.​ Iif:
Description: iif(condition: expression, valueIfTrue: any, valueIfFalse: any):
any Returns the valueIfTrue value if the condition is truthy or the
valueIfFalse value if the condition is falsy.
Example: "expression": "iif({question1} + {question2} > 20, 'High', 'Low')"

b.​ isContainerReady:
Description: isContainerReady(nameOfPanelOrPage: string): boolean
Returns true if all questions in a given panel or page have valid input;
otherwise, returns false. An empty question value is considered valid if
neither validators nor required status is defined for it.
Example: "expression": "isContainerReady('page1')"

c.​ isDisplayMode:
Description: isDisplayMode(): boolean Returns true if the form is in display
or preview mode.
Example: "expression": "isDisplayMode()"

d.​ Age:
Description: age(birthdate: any): number Returns age according to a given
birthdate. The date argument (which is typically taken from a question)
should be defined as a valid JavaScript Date.
Example: "expression": "age({birthdate})"

e.​ currentDate:
Description: currentDate(): Date Returns the current date and time.
Example: "expression": "currentDate()”

f.​ Today:
Description: today(daysToAdd?: number): Date Returns the current date
or a date shifted from the current by a given number of days.
For example, today() returns the current date, 0 hours, 0 minutes, 0
seconds; today(-1) returns yesterday's date, same time; today(1) returns
tomorrow's date, same time.
Examples: "expression": "today()" "expression": "today(2)"

g.​ Year:
Description: year(date?: Date): number Returns the year of a given date.
Example: "expression": "year({birthdate})"

42

h.​ Month:
Description: month(date?: Date): number Returns the month of a given
date as a value from 1 (January) to 12 (December).
Example: "expression": "month({birthdate})”

i.​ Day:
Description: day(date?: Date): number Returns the day of the month for a
given date as a value from 1 to 31.
Example: "expression": "day({birthdate})"

j.​ Weekday:
Description: weekday(date?: Date): number Returns the day of the week
for a given date as a value from 0 (Sunday) to 6 (Saturday).
Example: "expression": "weekday({birthdate})"

k.​ getDate:
Description: getDate(questionName: expression): Date Returns a Date
value converted from a given question's value.
Example: "expression": "getDate({birthdate})"

l.​ dateDiff:
Description: dateDiff(fromDate: any, toDate: any, "days" | "months" |
"years"): number Returns a difference between two given dates in full days
(default), months, or years.
Example: "expression": "dateDiff({birthdate}, today(), "months")”

m.​diffDays:
This function is obsolete. Use the dateDiff function instead. Description:
diffDays(fromDate: any, toDate: any): number Returns the number of days
between two given dates.
Example: "expression": "diffDays({startDate}, {endDate}) < 7"

n.​ Sum:
Description: sum(param1: number, param2: number, ...): number Returns
the sum of passed numbers.
Example: "expression": "sum({total1}, {total2})"

o.​ Max:
Description: max(param1: number, param2: number, ...): number Returns
the maximum of passed numbers.

43

Example: "expression": "max({total1}, {total2})"

p.​ Min:
Description: min(par1: number, par2: number, ...): number Returns the
minimum of passed numbers.
Example: "expression": "min({total1}, {total2})"

q.​ Avg:
Description: avg(par1: number, par2: number, ...): number Returns the
average of passed numbers.
Example: "expression": "avg({total1}, {total2}, {total3})"

r.​ sumInArray:
Description: sumInArray(questionName: expression, dataFieldName:
string, filter?: expression): number

Returns the sum of numbers taken from a specified data field. This data
field is searched in an array that contains a user response to a
Multi-Select Matrix, Dynamic Matrix, or Dynamic Panel question. The
optional filter parameter defines a rule according to which values are
included in the calculation.

The following code sums up values from a "total" matrix column but
includes only the rows where a "categoryId" column equals 1:

Here,
matrixdynamic = question title or name
Total = column name
categoryId = column name.

Example: "expression": "sumInArray({matrixdynamic}, 'total', {categoryId}
= 1)"

9.​ Conditional Logic and Dynamic Texts:
This section describes how to implement custom conditional logic and add
dynamic texts to forms. These features allow you to personalize forms by
dynamically updating content and applying logic based on user inputs or
predefined conditions.

44

a.​ Dynamic Texts:
Dynamic texts use placeholders to display content that updates in
real-time based on user responses or calculated values.
They can be applied to:

●​ Titles and Descriptions: Surveys, pages, panels, and
questions.

●​ HTML Properties: Attributes like completedHtml,
loadingHtml, and more.

●​ Expressions: Used in logic or calculated values.

●​ Placeholders in Dynamic Texts:
Question Values: Refer to question responses using
{questionName}. Example:

"html": "<p>Hello, {firstName} {lastName}!</p>"

●​ Variables: Dynamically set and get variables using setVariable()
and getVariable() methods. Example:

"html": "© 2015-{currentyear}"

●​ Calculated Values: Dynamically compute values using
expressions in the calculatedValues array. Example:

{
 "name": "fullname",
 "expression": "{firstName} + ' ' + {lastName}"
}

●​ Accessing Array Values: Certain question types store multiple

values. Use dot notation or indexes to access specific values:

Multiple Textboxes: {questionName.itemName}
Dynamic Panel:
{dynamicPanelName[index].questionName}
Checkboxes: {checkboxQuestionName[index]}

45

●​ Dynamic HTML: users can configure different HTML content based
on conditions using completedHtmlOnCondition.​
Example:

"completedHtmlOnCondition": [
 { "expression": "{score} > 80", "html": "<p>Excellent!</p>"
},
 { "expression": "{score} > 50", "html": "<p>Good Job!</p>"
}
]

b.​ Conditiuonal Logic:
Conditional logic dynamically updates the form’s behavior or content
based on user responses. It uses expressions to define conditions.

●​ Using Expressions: Expressions evaluate conditions and perform
calculations dynamically at runtime.​
Examples:

Boolean: {age} >= 18 and {country} = 'USA'
Numeric: sum({question1}, {question2})
String: iif({score} > 50, 'Pass', 'Fail')

●​ Supported Operators: Expressions support various logical,

comparison, and arithmetic operators:

Operator Description Expression example

empty
Returns true if the value is
undefined or null. "{q1} empty"

notempty
Returns true if the value is different
from undefined and null. "{q1} notempty"

|| / or

Combines two or more conditions
and returns true if any of them is
true. "{q1} empty or {q2} empty"

&&" / and

Combines two or more conditions
and returns true if all of them are
true. "{q1} empty and {q2} empty"

! / negate
Returns true if the condition returns
false, and vice versa. !{q1}

46

<= / lessorequal

Compares two values and returns
true if the first is less or equal to the
second. "{q1} <= 10"

>= / greaterorequal

Compares two values and returns
true if the first is greater or equal to
the second. "{q1} >= 10"

#ERROR!

Compares two values and returns
true if they are loosely equal (that
is, their type is disregarded). "{q1} = 10"

!= / <> / notequal
Compares two values and returns
true if they are not loosely equal. "{q1} != 10"

< / less

Compares two values and returns
true if the first is less than the
second. "{q1} < 10"

> / greater

Compares two values and returns
true if the first is greater than the
second. "{q1} > 10"

#ERROR! Adds up two values. "{q1} + {q2}"

-
Subtracts the second value from the
first. "{q1} - {q2}"

* Multiplies two values. "{q1} * {q2}"
/ Divide the first value by the second. "{q1} / {q2}"

%

Returns the remainder of the
division of the first value by the
second. "{q1} % {q2}"

^ / power
Raises the first value to the power
of the second. "{q1} ^ {q2}"

*= / contains / contain

Compares two values and returns
true if the first value contains the
second value within it. "{q1} contains 'abc'"

notcontains / notcontain

Compares two values and returns
true if the first value doesn't contain
the second value within it. "{q1} notcontains 'abc'"

anyof

Compares a value with an array of
values and returns true if the value
is present in the array.

"{q1} anyof ['value1',
'value2', 'value3']"

allof

Compares two arrays and returns
true if the first array includes all
values from the second.

"{q1} allof ['value1', 'value2',
'value3']"

47

Disables type conversion for a
referenced value (e.g., string values
"true", "false", "123" won't be
converted to corresponding
Boolean and numeric values). "{#q1}"

c.​ Variables and Calculated Values:
●​ Variables: Variables are set and retrieved programmatically.

Set a Variable: survey.setVariable("currentYear", 2023);
Get a Variable: survey.getVariable("currentYear");

●​ Calculated Values: These are defined in the calculatedValues

array of the JSON schema and update dynamically when their
dependencies change. Example:

"calculatedValues": [
 { "name": "totalScore", "expression": "sum({score1}, {score2})"
}
]

d.​ Practical Examples:

●​ Conditional Visibility: Show a question only if a specific condition
is met.

{
 "name": "age",
 "type": "text",
 "visibleIf": "{age} >= 18"
}

●​ Dynamic HTML Based on User Inputs: Change completion

message based on survey results.

"completedHtmlOnCondition": [
 { "expression": "{score} >= 90", "html": "<p>Excellent!</p>" },
 { "expression": "{score} >= 50", "html": "<p>Good Job!</p>" }
]

48

●​ Referencing Values from Arrays: Access specific selections or
responses.

{
 "html": "Selected Option: {checkboxQuestionName[0]}"
}

●​ Combining Variables and Calculated Values:

"calculatedValues": [
 { "name": "total", "expression": "sum({item1}, {item2})" }
],
"html": "<p>Total: {total}</p>"

10.​Publishing Forms as Public:

This section provides a step-by-step guide for creating and publishing forms and
apps in the system. There are two ways to create a public URL for a form: using
the Form V2 Component or using Custom JSON. Additionally, we provide steps
for publishing an app that hosts the form.

a.​ Publishing a Form Using "Form V2" Component
●​ Create a Page:

●​ Navigate to Apps & Pages and click on Pages.
●​ Create a new page by clicking + Create Page.
●​ Open the newly created page.

49

●​ Add a Form V2 Component:
●​ Click on Add Component.
●​ From the component type dropdown, select Form V2.
●​ Choose the desired form to publish.
●​ Provide a title for the form in the Section Title field.

●​ Optional settings:
●​ Submission ID: Allows viewing submission data for the

form.
●​ Edit Data Checkbox: Enables users to edit form data.
●​ Click Save.

●​ Preview the Form:
●​ After adding the component, click Preview to view the form

on the page.
●​ Publish the Page:

●​ Open the Menu Settings on the right.
●​ Set Menu Visibility to "Show" for the page to appear in the

sidebar menu.
●​ Define the Menu Label (name of the page in the menu).
●​ Set the Path URL (e.g., /test-form/customer-feedback).
●​ Mark Active as "True" to make the page active.
●​ Assign appropriate permissions to users who need access to

the page.
●​ Click Save.

●​ Publish the Form:
●​ Click the Publish button to make the form live on the service

layer.

50

b.​ Publishing a Form Using "JSON"
●​ Create a Page and Add a JSON Component:

●​ Follow the steps to create a page.
●​ Select JSON as the component type while adding a new

component.
●​ Add JSON Code:

●​ Paste the JSON configuration in the Component JSON
field. Ensure the formDid in the JSON matches the form's ID.
Example JSON:

{"id":"containerBlock","type":"Block","permission":"","title":"","subTitle":"","helpText":"","
style":{},"className":"page-container","active":true,"attr":{"description":""},"component
s":[{"id":"fo06","type":"Block","permission":"a-permission-string","title":"Users","subTitle
":"Users","helpText":"test","style":{},"active":true,"className":"page-default-height","at
tr":{},"components":[{"id":"blockId0.3054341829359801","type":"Block","permission":"",
"title":"","subTitle":"","helpText":"","style":{},"className":"","active":true,"attr":{},"compo
nents":[{"id":"formViewer","type":"pageFormViewer","permission":"","title":"","subTitle":"
","helpText":"","style":{},"className":"","active":true,"attr":{"edit":true,"formDid":"4bef36
1cf8b14f089a79d944db8e6aaf","submissionDid":""},"components":[]}]}]}]}

●​ Save and Preview:
●​ Click Save to add the component to the page.
●​ Click Preview to ensure the form displays correctly.

●​ Publish the Form:
●​ Follow the same publishing steps as in the Form V2

Component section.
c.​ Publishing an App

●​ Create an App:
●​ Navigate to Apps & Pages and click on Apps.
●​ Click Create App.
●​ Fill in the following details:

●​ App Title: Name of the app (e.g., "Form Test App").
●​ Path: Specify the app’s path (e.g., /form-test-app).
●​ Maintenance Mode: Enable or disable based on the

app’s development status.
●​ Show the App: Set to "True" to display the app in the

sidebar.
●​ Core: Set to "True" if this is a core app.
●​ Priority: Assign a priority number.
●​ Description: Add a description of the app.
●​ App Logo: Optionally, upload a logo.

●​ Assign Pages to the App:
●​ Scroll to the All Pages of the App section at the bottom of

the page.

51

●​ Click the + button to add pages.
●​ Select the desired page(s) and click Save.

d.​ Enable Public Visibility:
●​ Enable the Public Visibility option.
●​ Provide the following:

●​ App Name: The app name (e.g., "Form-Test-App").
●​ Landing URL: Define a landing URL for the app (e.g.,

/test-form/customer-feedback-json).
●​ Users: Assign specific users who can access the app.

e.​ Save and Publish:
●​ Click Save to finalize the app.
●​ Click the Publish button to make the app live.

f.​ Access Public Site URL:
●​ After publishing, a Public Site URL and an Embed Code will be

generated. These can be copied for sharing or embedding.
g.​ Notes:

●​ The public URL for forms works only if the app or page is
published.

●​ Permissions must be assigned to ensure visibility for the intended
users.

●​ JSON configurations must match the required schema and the form
ID.

11.​Form Permissions Management:
The Form Permissions page allows administrators to manage user permissions
for specific forms. By default, the user who created the form is granted full
access to all permissions. Additional users and permissions can be assigned
through the interface.

a.​ Permissions Overview
Below is the list of permissions available for forms:

●​ Who can view this form: Users assigned here can view the form.
●​ Who can edit this form: Users assigned here can make changes

to the form structure and content.
●​ Who can delete this form: Users assigned here can delete the

form entirely.
●​ Who can view submissions of this form: Users assigned here

can access the data submitted through the form.
●​ Who can submit this form: Users assigned here can submit

responses to the form.
●​ Who can update submissions of this form: Users assigned here

can edit existing submissions.

52

●​ Who can delete submissions of this form: Users assigned here
can delete submission entries.

●​ Who can manage the permission settings of this form: Users
assigned here can modify the permissions for this form.

b.​ Steps to Assign Permissions
●​ Assign Users: In the Select Users dropdown, search for and

select users who need access to the form.
●​ Assign Permissions: Use the Select Permission field to specify

the type of access each user should have. Permissions are
●​ pre-defined in the system.
●​ Default Creator Permissions: The form creator automatically has

access to all permissions. This cannot be revoked unless managed
by another user with appropriate permissions.

●​ Save Changes: After assigning users and permissions, click the
Update button at the bottom of the page to save the changes.

c.​ Additional Notes
●​ Only users with the "Manage Permission Settings" privilege can

modify the permissions for a form.
●​ Permissions are tied to the user management system, ensuring that

only authorized users can access or modify form data.

12.​Form Submission History Page:
The Submission History Page provides users with a comprehensive interface
to view, manage, and interact with form submissions. It includes features for
reviewing, editing, updating, and deleting submissions.

53

Here is the Key Features of the submission history page.

a.​ Submission Overview Table Columns:
●​ Name: The name of the form.
●​ Version: The version number of the form used for the submission.
●​ Status: Indicates the submission state, such as:

●​ Draft: A submission that is saved but not completed.
●​ Complete: A submission that has been finalized and

submitted.
●​ Submitted By: The user who made the submission (displayed with

their name and avatar).
●​ Last Modified: The timestamp of the last modification to the

submission.
●​ Action: Provides additional functionality, such as viewing, editing,

or deleting submissions.

54

b.​ Filters and Sorting

●​ Clear Filter: Allows users to reset applied filters to view all
submissions.

●​ Sort Options: Columns such as Version and Last Modified can
be sorted to organize submissions by their values.

c.​ Pagination
●​ The page supports pagination to handle large datasets efficiently,

with options to navigate through pages.

55

d.​ Actions

●​ View Submission Details: Users can click on the submission
name or use the action menu (three vertical dots) to open the full
details of a submission, which includes all form responses and
metadata.

●​ Edit and Update Submissions: Users with appropriate
permissions can modify a submission by selecting the Edit option
in the action menu. Changes made can be saved to update the
submission.

e.​ Delete Submissions:

●​ The Delete option in the action menu allows users to permanently
remove a submission from the system.

●​ A confirmation prompt ensures accidental deletions are avoided.

56

f.​ Use Case Scenarios
●​ Review Submissions: View the details of all submissions to

analyze responses and ensure accuracy.
●​ Update Data: Modify existing submissions to correct errors or

make necessary updates.
●​ Manage Submissions: Delete outdated or incorrect submissions

to maintain clean data records.
●​ Track Progress: Use the status column to identify incomplete

submissions (Draft) and take necessary action.

13.​Form Version List Page:
The Version List Page in the forms application provides an organized view of all
versions of a specific form, enabling users to track and manage the different
iterations of their forms.

57

Key Features:

a.​ Version Overview Table
●​ Columns:

●​ Name: The name of the form.
●​ Version: The version number of the form, incremented with

each update.
●​ Version Status: Indicates the current state of each version:

●​ Active: The version currently in use.
●​ Inactive: Previous or deprecated versions.

●​ Created Date: The timestamp when the version was created.
●​ Last Modified: The timestamp when the version was last

updated.
●​ Action: Provides additional functionality for managing the

version.

58

●​ Filters and Sorting

●​ Filter Options: Users can filter versions based on name,
version status, or date ranges for created/modified
timestamps.

●​ Sort Options: Users can sort columns (e.g., version, dates)
to organize the list for better navigation.

●​ Pagination:

●​ The page supports pagination to manage long lists of
versions efficiently.

b.​ Actions
Users can click on the Action Menu (three vertical dots) to access detailed
information about a specific version, including its configuration and usage.

●​ Preview

59

●​ Purpose: Allows users to view the form as it will appear to
the end-user (Read only view).

●​ Details:
●​ Redirected to the preview of the selected form.
●​ Helps users verify the form's design and layout before

activation or publishing.
●​ Ensures that any changes or updates made to the

form version appear as intended.

●​ Editor View:
●​ Purpose: Opens the form in edit mode, allowing users to

modify the structure, fields, or logic of the selected version.
●​ Details:

●​ Redirects to the form editor interface specific to the
selected version.

●​ Users can add, remove, or update form fields,
validation rules, and other configurations.

●​ Saves updates as a new version or overwrites the
current version, depending on the user's permissions
and system design. These functions ensure users
have complete control over form iterations, improving
their ability to manage updates and ensure
high-quality forms.

14.​Translation Settings:

The Translation Settings Page in your Forms V2 Application provides a
centralized interface for managing multilingual content for forms. Users can set a
local or global language for each question. The default language is English. The
user can change the language and use it in the forms. Here's an overview of the
page's features and functionality:

a.​ Translation Sections:

The page allows users to translate specific elements of a form, including:

●​ Form Title.
●​ Form Description.
●​ Page Title.
●​ Page Description.
●​ “Thank you” page markup.
●​ Markup to show if the user already filled this form.
●​ Markup to show while the form is loading.
●​ Questions: Titles and labels for each question.
●​ HTML Markup: Custom HTML content that may include links or

instructions.

60

Each translatable field has an editable translation area for every
selected language.

b.​ Language Settings Panel:
●​ Add Languages:.

●​ Users can add new languages using the plus (+) button in
the right-hand panel.

●​ The dropdown on the Language Settings panel displays a
wide range of languages available for selection.

●​ Users can type in the search bar or scroll through the list to
select additional languages.

●​ Once a language is added, all fields become available for
translation into that language.

●​ Default Language:
●​ The default language is pre-selected (e.g., English).
●​ Other added languages are listed below with the option to

manage or remove them.
c.​ Steps to Adding and Managing Translations

●​ Add a New Language:
●​ Click the plus (+) button in the language settings panel.
●​ Select the desired language from the list.

●​ Input Translations:
●​ For each form element, provide translations under the

selected language's column.
●​ Preview Changes:

●​ Switch to the Preview tab to check how the translated form
looks.

●​ Save and Publish:
●​ Click Update to save changes.
●​ Use the status toggle (if applicable) to make the updated

form live.

This page ensures accessibility for a global audience by supporting multilingual
forms with ease.

15.​ETC 0
16.​ETC 1
17.​ETC 2
18.​ETC 3
19.​ETC 4

61

	Table of contents:
	Introduction:
	Key characteristic:
	Application execution Diagram:
	Application Access process:
	Supportive Applications:
	Application execution process:
	List of Features:
	Getting Started:
	1.​Manage Forms Page
	2.​Pages General properties and settings:
	3.​Adding Questions to a Form
	4.​All Input fields properties and settings:
	a.​Single Line Input:
	b.​Radio Button Group
	c.​Rating Scale
	d.​Checkboxes
	f.​Multi Select Dropdown
	g.​Yes-No (boolean)
	h.​File Upload

	5.​Adding a Sample File to a Form:
	Task 1: Upload the Sample File in the Document Management Application
	Task 2: Add the File Link to the Form

	6.​Choices from a Web Service:
	7.​Data Validation:
	a.​Immediate Data Validation: Validation is triggered under different scenarios:
	b.​Built-In Client-Side Validators: These validators are available to validate user input against common requirements:
	c.​Custom Client-Side Validation:
	d.​Server-Side Validation:
	e.​Postpone Validation Until Survey Ends:
	f.​Switching Between Pages with Errors:

	8.​Build-in function for Expression Validation:
	9.​Conditional Logic and Dynamic Texts:
	a.​Dynamic Texts:
	b.​Conditiuonal Logic:
	c.​Variables and Calculated Values:

	
	10.​Publishing Forms as Public:
	a.​Publishing a Form Using "Form V2" Component
	b.​Publishing a Form Using "JSON"
	c.​Publishing an App
	d.​Enable Public Visibility:
	e.​Save and Publish:
	f.​Access Public Site URL:

	11.​Form Permissions Management:
	a.​Permissions Overview
	b.​Steps to Assign Permissions

	12.​Form Submission History Page:
	13.​Form Version List Page:
	a.​Version Overview Table
	b.​Actions

	14.​Translation Settings:
	a.​Translation Sections:
	b.​Language Settings Panel:
	c.​Steps to Adding and Managing Translations

	15.​ETC 0
	16.​ETC 1
	17.​ETC 2
	18.​ETC 3
	19.​ETC 4

